这里或许是互联网从业者的最后一片净土,随客社区期待您的加入!
您需要 登录 才可以下载或查看,没有账号?立即注册
×
本帖最后由 as22 于 2026-1-16 15:20 编辑
1月16日消息,今日,美团 LongCat 团队正式对外发布并开源 LongCat-Flash-Thinking-2601。
作为已发布的 LongCat-Flash-Thinking 模型的升级版,LongCat-Flash-Thinking-2601在Agentic Search(智能体搜索)、Agentic Tool Use(智能体工具调用)、TIR(工具交互推理)等核心评测基准上,均达到开源模型 SOTA 水平。
该模型尤其在工具调用上表现出卓越的泛化能力,在依赖工具调用的随机复杂任务中性能超越了 Claude,可大幅度降低真实场景下新工具的适配训练成本;同时它是首个完整开源并支持在线免费体验「重思考模式」的模型,同时启动 8 个大脑飞速运转,确保思考周全、决策可靠。
全新升级的「重思考」模式,让模型学会了“深思熟虑”再行动,遇到高难度问题时,模型会把思考过程拆成并行思考和总结归纳两步来做:
并行思考阶段,模型会同时独立梳理出好几条推理路径,就跟人面对难题时会琢磨不同解法一个道理,还会特意保证思路的多样性,生怕漏掉最优解;
总结归纳阶段,对多条路径进行梳理、优化与合成,并将优化结果重新输入,形成闭环迭代推理,推动思考持续深化。
除此之外,还专门设计了额外的强化学习环节,针对性打磨模型的总结归纳能力,让 LongCat-Flash-Thinking-2601 真正实现“想清楚再行动”。
经过全面严谨的评估显示,LongCat-Flash-Thinking-2601 模型在编程、数学推理、智能体工具调用、智能体搜索维度表现全面领先:
编程能力:LongCat-Flash-Thinking-2601 在 LCB 评测中取得 82.8 分,OIBench EN 评测获 47.7 分,成绩处于同类模型第一梯队,展现出扎实的代码基础能力。
数学推理能力:在开启重思考模式后表现突出,LongCat-Flash-Thinking-2601 在 AIME-25 评测中获 100.0 分(满分),IMO-AnswerBench 中以 86.8 分达到当前 SOTA。
智能体工具调用能力:在 τ²-Bench 评测中拿到 88.2 分,VitaBench 评测中获得 29.3 分,均获得开源 SOTA 水平,在多领域工具调用场景下表现优异,适配实际应用需求。
智能体搜索能力:在 BrowseComp 任务中取得 73.1 分(全模型最优),RW Search 评测获 79.5 分,LongCat-Flash-Thinking-2601 具备强劲的信息检索与场景适配能力,达到开源领先水平。
同时,为了更好的测试智能体模型的泛化能力,美团 LongCat 团队提出了一种全新的评测方法——通过构建一套自动化任务合成流程,支持用户基于给定关键词,为任意场景随机生成复杂任务。每个生成的任务都配备了对应的工具集与可执行环境。
由于这类环境中的工具配置具有高度随机性,美团 LongCat 团队通过评估模型在该类环境中的性能表现,来衡量其泛化能力。实验结果表明,LongCat-Flash-Thinking-2601 在绝大多数任务中保持领先性能,印证了其在智能体场景下强大的泛化能力。
美团 LongCat 团队表示,在基于“环境扩展+多环境强化学习”的核心技术,为模型打造了多样化的“高强度练兵场”,构建了多套高质量训练环境,每套集成60余种工具并形成密集依赖关系图谱与复杂联动,支撑起高度复杂的任务场景。得益于这一方案,LongCat-Flash-Thinking-2601 在智能体搜索、智能体工具调用等核心基准测试中稳居前列,尤其在复杂随机的分布外任务中性能优于Claude。
此外,还在多类噪声环境下对智能体进行了训练,让智能体更“抗造”,拥有更强大的环境适应能力。
|