返回列表 发布新帖
查看: 16|回复: 0

[人工智能] Qwen3-TTS 语音生成模型全家桶开源上线

发表于 昨天 15:17 | 查看全部 |阅读模式

这里或许是互联网从业者的最后一片净土,随客社区期待您的加入!

您需要 登录 才可以下载或查看,没有账号?立即注册

×
本帖最后由 as22 于 2026-1-23 15:23 编辑

1月23日消息,据千问Qwen微信公众号消息,Qwen3-TTS 多码本全系列模型均已开源,包含1.7B和0.6B两种尺寸,1.7B可以达到极致性能,具有强大的控制能力,0.6B均衡性能与效率。

据介绍,Qwen3-TTS是由Qwen开发的一系列功能强大的语音生成,全面支持音色克隆、音色创造、超高质量拟人化语音生成,以及基于自然语言描述的语音控制,为开发者与用户提供最全面的语音生成功能。

依托创新的 Qwen3-TTS-Tokenizer-12Hz 多码本语音编码器,Qwen3-TTS 实现了对语音信号的高效压缩与强表征能力,不仅完整保留副语言信息和声学环境特征,还能通过轻量级的非 DiT 架构实现高速、高保真的语音还原。Qwen3-TTS 采用 Dual-Track 双轨建模,达成了极致的双向流式生成速度,首包音频仅需等待一个字符。

据悉,模型覆盖10种主流语言(中文、英文、日语、韩语、德语、法语、俄语、葡萄牙语、西班牙语、意大利语)及多种方言音色,满足全球化应用需求。同时,模型具备强大的上下文理解能力,可根据指令和文本语义自适应调整语气、节奏与情感表达,并对输入文本噪声的鲁棒性有显著提升。目前已经在Github上开源同时也可通过Qwen API体验。

3D5127EC-6169-418c-AE18-EB3B6EF8D556.png

5F9B7016-242C-42b7-AAC7-F8F8C0FC8865.png

Qwen3-TTS主要特点如下:

强大的语音表征:基于自研 Qwen3-TTS-Tokenizer-12Hz,实现语音信号的高效声学压缩与高维语义建模,完整保留副语言信息及声学环境特征,并可通过轻量级的非 DiT 架构实现高效、高保真语音还原。

通用的端到端架构:采用离散多码本 LM 架构,实现语音全信息端到端建模,彻底规避传统 LM+DiT 方案的信息瓶颈与级联误差,显著提升模型的通用性、生成效率与效果上限。

高极致的低延迟流式生成:基于创新的 Dual-Track 混合流式生成架构,单模型同时兼容流式与非流式生成,最快可在输入单字后即刻输出音频首包,端到端合成延迟低至 97ms,满足实时交互场景的严苛需求。

智能的文本理解与语音控制:支持自然语言指令驱动的语音生成,灵活调控音色、情感、韵律等多维声学属性;同时深度融合文本语义理解,自适应调节语气、节奏、情感与韵律,实现“所想即所听”的拟人化表达。

C96431BF-94FC-45bb-9E09-4D7C395770ED.png

另外,千问对Qwen3-TTS在音色克隆、创造、控制等方面进行了全面评估,结果显示其在多项指标上都达到了SOTA性能。

F088087E-1AA3-4ab5-B964-890F7E441885.png

0F965D7D-3BCE-46d5-8F3A-5B387A062FE7.png

还对Qwen3-TTS在音色克隆、创造、控制等方面进行了全面评估,结果显示其在多项指标上都达到了SOTA性能。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Copyright © 2001-2026 Suike Tech All Rights Reserved. 随客交流社区 (备案号:津ICP备19010126号) |Processed in 0.129816 second(s), 7 queries , Gzip On, MemCached On.
关灯 在本版发帖返回顶部
快速回复 返回顶部 返回列表